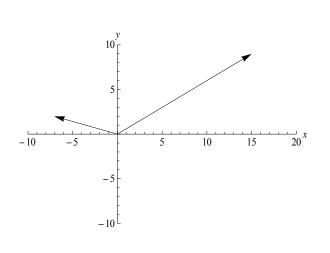
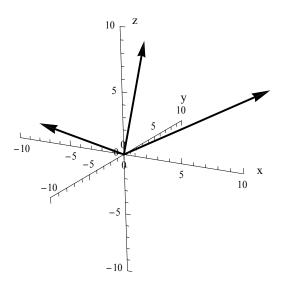

Introduction to Vectors

WHAT IS A VECTOR?

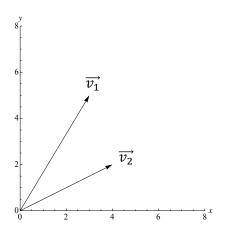
A *scalar* is a number, it has only <u>magnitude</u>. Examples of scalars are mass, body temperature, and the volume of a bath tub. A *vector* has both <u>magnitude</u> and <u>direction</u>. Examples of vectors are velocity, force, magnetic field lines etc.

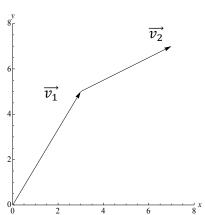

You can also think of it this way: Scalars have only one dimension, vectors have two or three.

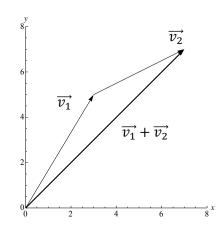

Scalars:

Vectors in 2 dimensions:

Vectors in 3 dimensions:

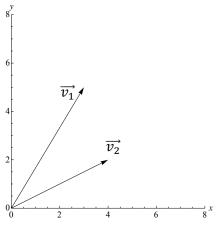


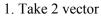


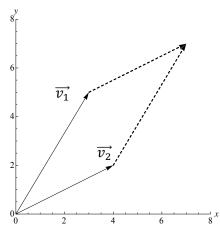

WHAT CAN WE DO WITH VECTORS?

1)ADD TWO VECTORS

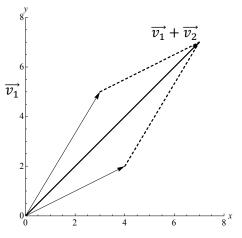
a) "Slap on" method

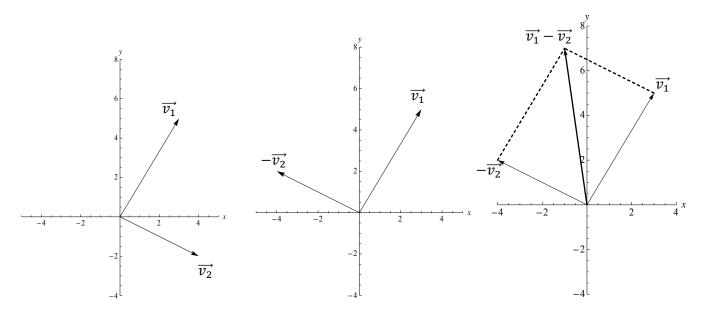




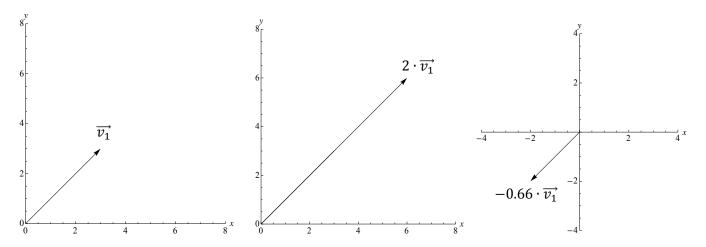


- 1. Take 2 vectors
- 2. "Slap" one at the end of the other
- 3. Draw out the result


b) Parallelogram method

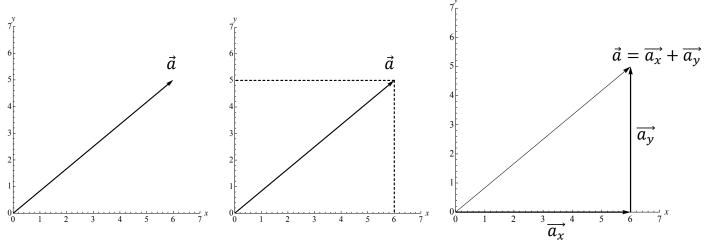


2. Draw parallels to both vectors

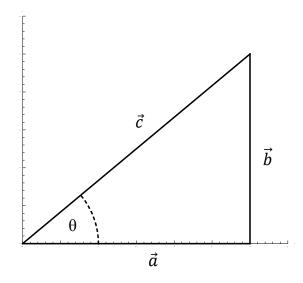

3. The resulting vector is the diagonal of the parallelogram

2)SUBTRACT TWO VECTORS

- 1. Take 2 vectors
- 2. "Flip" the one you are subtracting
- 3. Add the resulting vectors

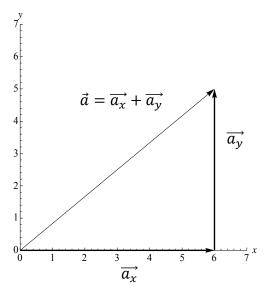

3)MULTIPLY A VECTOR BY A SCALAR

To multiply a vector by a scalar (i.e. a number) you multiply the <u>magnitude</u> by the number and leave the <u>direction</u> unchanged, unless you are multiplying by a negative number, in which case the direction "flips" to the opposite side.


HOW TO ADD TWO VECTORS WITHOUT DRAWING A GRAPH?

What you need to do is <u>decompose</u> each vector into its x and y components. Notice that the vector \vec{a} is the same as $\overrightarrow{a_x} + \overrightarrow{a_y}$:

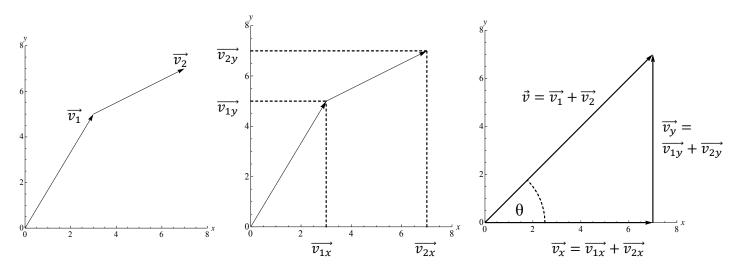
How do we get this decomposition?


We have to use the sine and cosine functions. Recollect that these are defined as:

$$\sin(\theta) = \frac{opposite\ side}{hypothenuse} = \frac{b}{c}$$

$$\cos(\theta) = \frac{adjecent\ side}{hypothenuse} = \frac{a}{c}$$

What does this mean to our vectors?? Take a look:


$$Cos(\theta) = \frac{a_x}{a} / a$$

$$a_{x} = a \cdot \cos(\theta)$$

$$Sin(\theta) = \frac{a_y}{a} / a$$

$$a_y = a \cdot \sin(\theta)$$

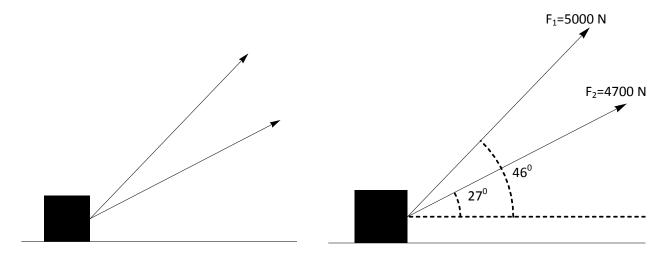
So, how do we add the two vectors? We have to decompose each of the vectors we are adding and then add their x and y components separately.

We get the magnitude of the resulting vector by using the Pythagoras theorem:

$$v^2 = v_x^2 + v_y^2$$
$$v = \sqrt{v_x^2 + v_y^2}$$

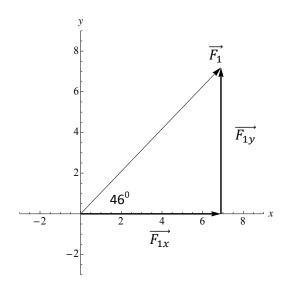
And the angle by using the tangent function:

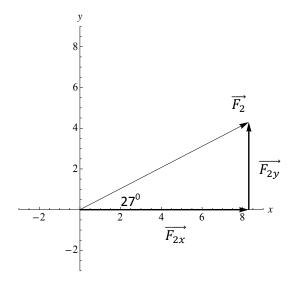
$$\tan(\theta) = \frac{opposite\ side}{adjecent\ side} = \frac{v_y}{v_x} \rightarrow$$


$$\theta = \arctan\left(\frac{v_y}{v_x}\right)$$

WHAT ARE VECTORS USED FOR?

Consider this problem:


The Egyptians are building a pyramid. They have tied two ropes to a huge block of rock and are pulling on them. The first rope is at an angle of 46° and is exerting a force of 5000 Newton; the second at an angle of 27° and exerting a force of 4700 Newton. What will the total force on the block be and which way will it be directed?


First, lets sketch this situation:

Let us now *decompose* these two vectors into their x and y components:

$$F_{1x} = F_1 \cdot \cos(46^0)$$

= 5000 \cdot \cos(46^0)
= 3473 N

$$F_{1y} = F_1 \cdot \sin(46^0)$$

= 5000 \cdot \sin(46^0)
= 3597 N

$$F_{2x} = F_2 \cdot \cos(27^0)$$

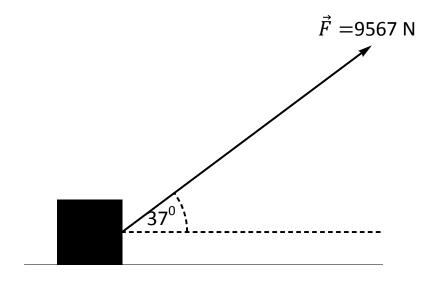
= 4700 \cdot \cos(27^0)
= 4188 N

$$F_{2y} = F_2 \cdot \sin(27^0)$$

= 4700 \cdot \sin(27^0)
= 2134 N

$$F_x = F_{1x} + F_{2x}$$

= 3473 N + 4188 N
= 7661 N


$$F_y = F_{1y} + F_{2y}$$

= 3597 N + 2134 N
= 5731 N

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{7661^2 + 5731^2} = 9567 \, N$$

$$\theta = \arctan\left(\frac{F_y}{F_x}\right) = \arctan\left(\frac{5731}{7661}\right) = 37^0$$

So, finally, the answer to the problem is:

The total force acting on the block is 9567 Newton and it is directed at an angle of 37⁰ to the ground.

